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Abstract 

A cursory and a primitive comparison between the signal-to-noise ratios of pressure and velocity 

arrays is conducted. The arrays of concern are planar arrays. The noise of special interest is that 

induced by Turbulent Boundary Layer (TBL). For a given incident pressure, as defined by its spectral 

density, when comparing an ideal conditioning plate (a rigid boundary) for the pressure array and an 

ideal conditioning compliance (a pressure release boundary) for the velocity array, the signal-to-noise 

ratio in the former array is by far superior to that of the latter array. A conditioning compliance that 

renders the boundary with an inverse fluid loading parameter that is of the order of unity may achieve 

for a velocity array a signal-to-noise ratio that is on par with that for the pressure array. In this 

comparison the two corresponding array types are subjected to the same incident spectral density. 



Introduction 

Two years ago the authors issued a report entitled "Primitive comparison of the signal-to-noise 

ratios of pressure and velocity arrays" [1]. During this period of two years not a nibble, to use a 

fisherman's phrase. On the 26th of May 1999 a seminar was scheduled and delivered at NUWC, 

Newport, RI. In this seminar the authors had the opportunity to introduce, directly to a scientific 

community at large, the material contained in the referenced report. Of course, inspite of the time 

constraint, modifications to the referenced report and some new material were introduced to fit the 

specific purpose of the seminar. The purpose included reaching an audience that is more directly 

concerned with the possible application of the subject matter. After the seminar was presented, it was 

decided to issue at this juncture a companion report to the referenced report. This companion report is 

to be based on the format in which the material was presented at the seminar. In this vein the 

viewgraphs are placed on the right of a two-sided report. When called for, on the left-side a few 

comments regarding the viewgraph on the right are to be presented. In this way the report has a 

seminar-like flavor. It is hoped that the flavor may be palatable to most readers. Above all, this 

companion report may remove a great number of infuriating typos that inadvertently permeate any 

report and any viewgraph; this removal may in itself justify the publication of this companion report. 

For a given incident pressure, as defined by its spectral density, when comparing an ideal 

conditioning plate (a rigid boundary) for the pressure array and an ideal conditioning compliance (a 

pressure release boundary) for the velocity array, the signal-to-noise ratio in the former array is by far 

superior to that in the latter array. It transpires that a conditioning compliance that renders the boundary 

with an inverse fluid loading parameter (£0) that is of the order of unity may achieve for a velocity 

array a signal-to-noise ratio that is on par with a pressure array. The parameter (£0) [=  K0 /(co0pc)] 

relates the surface stiffness (K0)of the conditioning compliance to the characteristic impedance (pc) of 

the fluid. This relationship defines the resonance frequency (a>0) of the surface stiffness of the 

compliant layer with the surface mass of the fluid. In this on par equality the two arrays are subjected to 

the same incident spectral density. This achievement for the velocity array is predicated on a resonance 

condition as just stated. Therefore, the equality appears destined to be confined to a narrow frequency 

band. In this report, however, the conditioning compliance is implemented by merely placing a simple 



compliant layer on a well nigh rigid backing plate. Of course, the conditioning compliance describes, in 

a general context, a boundary on which the mechanical surface impedance is suitably designed. A 

suitable boundary of relevance in this report is a boundary that resonates with the surface mass of the 

fluid atop. If this resonance condition can be sustained over a wider frequency band, the conditioning 

compliance is correspondingly of a wider frequency band. Such boundaries may be designed by a more 

elaborate compliant layer and/or by a more compounded combination of surface stiffnesses and surface 

masses and/or by even some non-mechanical elements thrown in. In a recent report describing another 

device that is based upon a resonance, the conditions that are necessary to maintain and sustain the 

resonance over a wider frequency band were introduced [2]. Whether an analogous widening of the 

frequency band may be achieved for the device of focus here is yet to be ascertained. 



Viewgraph 2 

Since the surface impedance of the boundary, with the array in place, is idealized to be spatially 

and temporally uniform, only specular reflections exist; the boundary does not cause any wavevector 

(and frequency) conversions [3]. Then, if the incident pressure is uniform, both in the spatial vector 

domain and in the temporal domain, the pressure on the boundary retains this characterization. 

The equation of the conservation of momentum at the fluid-boundary interface is differential in the 

spatial-temporal domain. This equation is algebraic in the corresponding spectral domain. Then, a 

fluid-surface impedance; the quantity Zw (k, CO), may be algebraically defined in terms of the pressure 

and the velocity on the boundary. 



Incidence, 
P(fc,co) 

Top Fluid 

(p,c) 

Specular 
Reflection 
Rp(k,a) 

Interface of the boundary 
with the top fluid 

The pressure pb and the velocity vb on the boundary 

are related, in terms of the conservation of momentum 

at the fluid-boundary interface, in the form 

p(dvb/dt)  = -(dpbldz) , 

where (p) is the fluid density, (t) is the temporal 

variable and (z) is the spatial variable normal to the 

boundary. In spectral space 

[Pb(k,co) I Vb(k,co)] = Zw(k,(D) = (pc/kz) ; 

k    = {colc)k7 ,   (c) = speed of sound in the fluid. 

V.2 



Viewgraph 3 

The wave equation renders the normalized wavenumber (fcz) positive and real in the supersonic 

range and negative and imaginary in the subsonic range, where (U) is the usual unit step function; 

namely 

U(a) = 
1   ,   A>0 

0  ,  fl<0 

Pb (k, CO) and Vb (k, CO) now obey the wave equation and Zw (k, CO) is the fluid-surface 

impedance in the plane of the boundary. Since the boundary is uniform, the relationship between 

Pi (k, CO) and Vf, (k, CO) is the same as between the incident pressure P(k, CO) and the incident velocity 

V(k,CO). Thus 

®v(k,co) = Ev
p(k,co) [<Pp(k,co)/(pc)2] 

®p(k,co) = \P(k,co)\2    ;    ®v(k,co) = \V(k,co)\2 

are just as valid as the relationships on the viewgraph. 



(P,c) 

Z     P 
Fluid 

b Complaint 
Vp 

Layer 

Plate 

The wave equation in the fluid demands 

kz => ^= [l-(kc/co)2]l/2U [l-(kc/co)] 

-i[(kc/co)2-l]l/2  U[(kc/co)-l];     \k\=k   , 

[Pb(k,co)/Vb(k,co)]=^Zw(k,co) ;   Zw(k,co) = (pc/k3) 

Spectral density 

%v(kM=EV(k,ü))[®bp(k,co)/(pcn   ; 

Ep(k,co) =  \\-kcl(of\   , 

where 

®bp(k,a)) = \Pb(k,ü))\2 ; G>bv(k,a)) = \Vb(Jc,co)\2 

V.3 



Viewgraph 4 

The validity of the equivalent circuit diagram again is predicated on the uniformity of the surface 

impedances involved, so that they can be represented by lump parameters and the relationships among 

them are algebraic. Of course one may readily introduce compliant layers that are wavevector 

dependent; i.e., K  =  K(k, CO), and orthotropy in both, in the plates and in the compliant layers, may 

also be readily introduced. However, in this report, for the sake of simplicity, such introductions are not 

explicitly considered. Moreover, in subsequent computations only the two approximations to the 

surface impedance of the boundary Zb(k,co); namely Zp (k, CO) or Zc (k, CO), are imposed. The 

generalization to the more elaborate form of the surface impedance is readily implemented and 

computed. Again, for the sake of simplicity computations including these generalizations are not 

implemented in the material to be presented herein. 
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The incident pressure on a boundary is spatially 

and temporally stationary so that the pressure can be 

defined in terms of its spectral density 0(£,ö)), where 

(k) is the wave vector variable in the plane of the 

boundary and (co) is the frequency variable. It is also 

assumed that the spectral components in the signal 

are uncorrelated with the spectral components of the 

(unwanted) noise so that 

0(fc,ö)) = 05(fe,ö>) +  &N(k,(D) ;   k = {kx,ky}9 

where ®s(k,co) and ®N(k,(D) are the spectral 

densities of the signal and the noise, respectively. 

V.5 " 



Viewgraph 6 

The steered filtering efficiency A(k \k, CO) implicitly accounts for a frequency efficiency filtering. 

In certain situations the frequency filtering efficiency plays a major role in the filtering efficiency of the 

array. In this report the frequency filtering efficiency of the array is idealized in the form 

A(k\k,co)®{k,co) = \dco'A'(k \k,co\co')Q>(k,co')   , 

where in particular and as an example 

A'(k\k,co\co') = A(k \k,co) 8{(o-co')    . 

In this format (a>) designates a specific frequency. In that context the variation in that specific 

frequency defines a frequency variable in the spectral density 0(&, CO). 

12 



The output O(ks,co) of the boundary array to the 

incident spectral density ®(k,co) may be formally 

expressed in the form 

0(k ,a)) = jdk J(k \k',G))<S}(k,G)) ;   dk = dkxdky ; 

J(ks\kaj) = A{ks\k,(0)D{k,(o) ; ks={ksx,ksy}, 

where D(k,m) is the filtering efficiency of the 

boundary — the passive filtering efficiency—and 

A(k \k,co), is the filtering efficiency of the array — 

the steered filtering efficiency—steered to the specific 

wave vector (k ). The quantity J(k \k,co) is the 

combined filtering efficiency of the flush mounted 

array. 

V.6 13 



Viewgraph 7 

Again, the frequency variable (co) and the frequency filtering efficiency is as defined in the 

previous viewgraph; i.e., Viewgraph 6. 

14 



Both the passive and the steered filtering efficiencies 

are designed into the array in order to maximize the 

signal-to-noise ratio RN, which is given by 

RN^CO) = [Os(ks,(D) I 0N(ks,(D)] , 

Os(ks,0)) = \dk A(ks\k,co) D(k,(D) &s(k,G>) , 

0N(ks,a>) = \dk A(ks\k,co) D(k,co) <f>N(k,G))'. 

The maximization of R^ requires the combined filter- 

ing efficiency J(ks I k,a>) {= [A(ks I k,a>) D(k,a> ]} 

to favorably accept the signal components ®s(k,co) 

and to simultaneously reject the noise components 

®N(k,(D). 

V.7 15 



Viewgraph 8 

f    1   ,   a>0 
U(a) = \ 

1    0   ,   a<0 

16 



For example, it is a fact that the signal ®s(k,co) is 

supersonic; i.e., 

Ocftö)) = <P0S(k,(Q) U [l-(kc/o))] , 

where U is the unit step function and k =  I it I. It 

becomes necessary, therefore, to ensure that the 

combined filtering efficiency J(ks I k, (o) is 

supersonically viable. 

V.8 
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On the other hand, the noise ON(k9(0) possesses, by 

definition, subsonic components in the incident spectral 

density on the boundary as well as supersonic 

components: 

®N(Kco)  =  &0N(k,(D) U[l-(kc/co)] 

+   ®lN(k,a>)U[(kc/CQ)-l] . 

The combined filtering efficiency J(ks I k, co) is the 

better the more it rejects subsonic components. That 

betterment, however, should not be derived at the 

expense of the acceptance in the supersonic range. The 

supersonic components in the noise; namely, 

O0Ar (£, co) U[l - (kc I co)], are not readily 

distinguishable from those of the signal. 

19 
V.9 



Viewgraph 10 

A sophistication may, for example, involve adaptive steering. 

20 



To selectively make this distinction between 

these two types of supersonic components; the 

supersonic signal components and the supersonic 

noise components, the steered filtering efficiency 

A{k A k,co) must attain a degree of sophistication, 

notwithstanding that this filtering efficiency may be 

called upon to further enhance the rejection of the 

subsonic components above and beyond that 

provided by the passive filtering efficiency D(kco). 

v.io 21 
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The foregoing is intended to serve merely as a 

review of material assumed familiar to the reader. 

The present seminar attempts to contrast the 

performance of two array types. One is composed of 

embedded "pressure transducers" that are flush 

mounted in the boundary and the second of "velocity 

transducers." Both arrays are assumed to be 

subjected to the same incident pressure spectral 

density Q}p(k,(6). However, each array is designed 

to maximize the signal-to-noise ratio RN(co); RpN(co) 

for the pressure array and Rv^(co) for the velocity 

array. 

23 
V.ll ZJ 



Viewgraph 12 

The dependence of the spectral densities on k   and k are depicted in terms of the wavenumbers 

M='£,y') and £(=I £')• The two dimensional character of the spectral densities of the signal and the 

noise are more closely sketched in the figure below. This figure shows a possible realization of these 

spectral densities. 

k = {ksx ,   kjy) - the steered wavevector; 

C - the sound speed in the fluid; 

Uc - the convective speed of a TBL. 

The reader is asked to conjure the difference and accept the limitation in the presentation on the 

viewgraph; a two-dimensional representation is projected on a one-dimensional counterpart. The sketch 

may help some readers to better visualize the intended meaning of the less detailed presentation used in 

this and the two following viewgraphs; Viewgraphs 13 and 14. 

24 



Hypothetical but instructive illustrations of 

a.   The spectral densities of the signal and the noise. 

(a) 

3>(£,Cö) 

A- 
«^_ 

(-D        {ksc/a>p) 

/ 
r\ 

\ 

/  \ 

\ 
V. 

{clUc)   (kc/(o) 

V.12 
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Viewgraph 13 

The comments made with respect to the preceding viewgraph (Viewgraph 12) are relevant to this 

viewgraph. 

26 



Hypothetical but instructive illustrations of the 

filtering efficiencies A(kAk,co) and D(k,co) and their 

utility are sketched on this viewgraph. 

(b) 

D(k,(o) 

(-D        (0)        (1) (kc/(ö) 

(c) 

A{ks\k,(ö) 

A/\/K 
(kc/(a) 

]{ks\k ,a>) 

J(ks\k ,(£>) = [A{ks\k,(i))D{k, ©J] 

(d) (*5c/a>) (kc/(o) 

V.13 
27 
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a.   The spectral densities of the signal and the noise. 

<M/:,co) 

$s(*,G>) 
<&(*,(») 

A- 
«^_ 

/ 
A 

\ 

/   \ 
\ 

V. 

(a) (-D        (*5c/©)tt) (clUc)   (kc/(o) 

J{ks\k,(£>) 

J(ks\k ,®) = [A(ks\k,(o)D{k, coj] 

(d) 
AA/K, 

(*,C/CD) (fc/©J 

d.   The combined filtering efficiency of the array. 

V.14 
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Viewgraph 15 

In this report the surface impedances that are involved at the boundary are assumed to be isotropic 

and, hence, the passive filtering efficiencies are, in fact, dependent on the wavenumber (k) and not on 

the wavevector (k). In this sense, the factors in the passive filtering efficiencies may be naturally 

depicted in terms of the normalized wavenumber (kc/co); the values of these factors are assumed to be 

independent of the angular variables. 

30 



Passive Filtering Efficiency for a Pressure Array 

The incident pressure P(k, co) on the boundary is 

presented to the boundary as 

A(jt,ö>) = P(k,co)[l + RJk,co)] , 

where Rp (k, co) is the boundary reflection coefficient 

Rp(k,co) = [Zb(k,a>)-Zw(k,co)] [Zb(k,co) + Zw(k,CD)Yl 

and Z^ (k, tf)) is the mechanical surface impedance of 

the boundary; e.g., for a boundary that is equivalently 

a thin isotropic plate responding in flexure 

with k%=[(0(Dc/c
2] and  ZV!;(fe,ö))=[(pcr)/^]. 

The factor [1 + Z? (Ä; co)] is the "conditioning plate" 

filtering function; the filtering efficiency Cp(k,co) of 

the conditioning plate is then given by 

CJk,co) = \l + RD(k,co)\2 

M2I 7   ffr Y>^+7 = 4izD(jk,ö))i2izI,(fe,ö»+zw(jk,ö))r2 

V.15 31 



Viewgraph 16a 

An ideal conditioning plate is one for which \Zp(k,CO)\   »   I Zw (k, CO) I throughout the 

relevant spectral space of concern. The inequality can hardly be maintained at and in the vicinity of the 

sonic region where {kclCO) = 1. In this sonic region the fluid-surface impedance Zw(k,C0) assume 

absolute values that are far in excess of the characteristic fluid impedance (pc). Then no reasonable 

plate-surface impedance can compete with such values. Nonetheless, the ideal conditioning plate, 

except for that sonic region, induces passive filtering efficiency Cp(k, CO) that is maintained at the 

value of (4), as depicted in the viewgraph. In the viewgraph 

[(pc)/(com)] = [£c(coc/co)] «1   ;   £c « 1 <<(coc/co)   , 

where (m) is the surface mass associated with the plate and (C0C) is the critical frequency of the plate 

with respect to the speed of sound in the fluid. This inequality ensures that the plate surface impedance 

Zp(k,C0) on the dominating surface impedance on the boundary in the spectral region of concern. This 

dominance is even with respect to the fluid-surface impedance. To validate the above inequality in the 

viewgraph one requires (C0C I CO) to be at least (106) and the fluid loading parameter (£c) to be less 

than (10   ). Only an ideal conditioning plate (an essentially rigid plate) may sustain such extreme 

values. 

32 



io5 r 

104 r 

103 r 

10" 

101 

CD(bv) 10° 

1 ci- 

io -2 

10 

10" 

-3 

10 -5 J '      I    I   I  Ml I   I  I I I 111 I     I   I  I I I III I     I   I  I II III 

10 ,-1 10c 101 102 

(kc/(£>) 
10* 

V.16a 33 



Viewgraph 16b 

In this viewgraph the passive filtering efficiency Cp(k,(ü) is compared with the ideal when the 

inequality 

[(pc)l{(Om)] = £C(C0C/C0) « 1 

stands in violation. Two cases that stand in violation are depicted on this viewgraph. Although the 

violation in both cases is to the same extent, the results are different; i.e., the product [€C(C0C 1(0)1 is 

the same in the two cases, the difference lies in that (£c) and {(Ocl(0) are not equal in the two cases. 

Since the "anti-resonance" and the "resonance" that follows are due to the small value of I Zp(k ,0)) I 

and due to the surface stiffness of the plate resonating with the surface mass of the fluid, respectively, 

the positioning of the anti-resonance and resonance are readily ascertained; e.g., the anti-resonance 

occurs axikclco) - (o)c/co)U2. There is a loss in the pressure doubling that the ideal conditioning 

plate sustains. This is manifest by a departure of Cp(k,a>) below the resonance from the value of (4). 

The decrease in the passive filtering efficiency is rendered by the higher ratio of the fluid-surface 

impedance to the surface impedance of the conditioning plate. This higher ratio is reflected by a higher 

[(pc)/((Om)] in the spectral range preceding the resonance. Indeed, since the ratio [(pc)/(com)] is the 

same in the two cases, Cp(k,0)) is diminished equally in the two cases in the relevant range of 

{kclco). Above the resonance condition, where (kc/co) > (0)c l(0)xl2, the surface impedance of the 

conditioning plate in the two cases becomes totally dominant on the boundary and Cp(k,CO) assumes 

the value of (4). [cf. Viewgraph 16a.] 

34 
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Viewgraph 17 

A device that assists the passive filtering efficiency of a boundary is to place a blanket over the 

array; the blanket removes the interface with the fluid to the surface atop the blanket. The blanket is 

assumed to be endowed with a fluid-like properties in that it transmits intact the supersonic components 

and it decays exponentially the subsonic components on their way from the top surface onto the array 

boundary at the bottom surface of the blanket. The exponential decay is governed by the thickness of 

the blanket in the manner stated in the equation in the viewgraph. Unlike the fluid, however, the blanket 

retains its shape in lieu of its shear modulus that is ignored in the ideal blanket here considered. The 

filtering efficiency B(k,co) of an ideal blanket constitutes a factor in the passive filtering efficiency 

D(k, CO) of the array. The nature of the factor B(k, (0) of an ideal blanket is depicted in the viewgraph. 

Since only the subsonic components are decayed by a blanket, it assists the passive filtering efficiency to 

cope with noise components in that spectral range. The blanket is neutral in the supersonic range; it 

does not assist the passive filtering efficiency of the array to distinguish between supersonic components 

that belong to the signal and to the noise. 

36 



The filtering efficiency B(k,a>) of a blanket 

B(k,a>) =U[l-(kc/co)] 

+txp[-2(bco/c){(kclcof -1}1/2] U[{kclco)-l] 

where (b) is the thickness of the blanket. 
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Viewgraph 18a 

This viewgraph depicts the passive filtering efficiency Dp (k, CO) of a pressure array incorporating 

an ideal conditioning plate and a standard blanket. The passive filtering efficiency CJk,CO) for the 

ideal conditioning plate is depicted in viewgraph 16a and the passive filtering efficiency B(k,C0) for the 

standard blanket is depicted in Viewgraph 17. (The standard blanket is characterized by a thickness 

(bCD/c) = (1/30).) 

Dp(k,co) = Cp(k,co)B(k,co) . 

Comparing Viewgraph 18a with Viewgraph 16a reveals the effectiveness of the blanket with 

respect to the noise. One is merely reminded that spectral density components that reside in the 

subsonic range are noise components. The higher the subsonic range the more effective is the blanket. 

The spectral density components that reside in the supersonic range are unaffected by the presence of the 

blanket, whether the components are signal or noise. 
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Viewgraph 18b 

Again, in this viewgraph the passive filtering efficiency B(k, CO) is that of the standard blanket. 

This viewgraph is composed of data presented in Viewgraphs 16 and 17. 
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The passive filtering efficiency Dp(k,co) for the 

pressure array is the combined passive filtering 

efficiency Cv(k,co) of the conditioning plate and the 

passive filtering efficiency B(k,co) of the blanket; 

namely DD(k,co) = CJk,co) B(k,co) 

a 

s 
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Viewgraph 19 

Equating Ap(k\k,CO), Av(k\k,CO) and [A%(k \k,(ö)l(pcf ] states that the absolute value of 

the sensitivity in the two arrays to a normal incidence are rendered equal and that, hence, the steering 

filtering efficiencies are rendered identical. In this calibration the boundaries are assumed to yield the 

same values for the passive filtering efficiency for that normal incidence. It remains to examine the 

passive filtering efficiency Dv(k,CO) for the velocity array. 

Thus, once Dp(k,co) and Dv(k,G>) are determined a comparison of the outputs of the two arrays 

can be ascertained. 
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Filtering Efficiency for a Velocity Array 

0v(fcy,6)) = \dk J°{ks\k,(o) $>v(k,co) ; 

J°(kAh,(Q) = A°(ks\k,(0)D°(ks\k,(0)    ; 

where (pc) is the characteristic impedance of the fluid 

andOv(£,<ü) =  ll-(fc/ö))2l(pc)"20  (ife,ö)).Then 

Ov(ks,G)).= jdk Jv(ks\k,a>) ®p(k,co) ; 

Jv(ks\k,co) = AyikslktG)) Dv(k,co) , 

where 

Av (^ I fe,ö)) = A°(ks I k,(ol(pc)2 

Dv(k,(D) = D°(k,co)Ev
p(k,(D);   Ev

p(k,a>) = \l-(kc/coj 

Equate 

AD(k I fc,ö)) = AJks I Jk,ö>) = [A°(ks I £,ö))/(pc)2] . 
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Viewgraph 20 

[c.f., Viewgraph 15.] 
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Passive Filtering Efficiency for a Velocity Array 

The incident velocity V(k,Q)) on the boundary is presented as 

Vb(k,(D) = V(k,co)[l + Rv(k,co)]\ Rv(k,co) = -Rp(k9co) 

where Rv(k,CO) is the reflection coefficient of the boundary 

/?v(^^) = [Zw(^^)-Z^(^^)][Zw(^0)) + Z^(^^)r\ 

and again, Zb(k,CO) is the mechanical surface impedance of 

the boundary, which for the velocity array is selected to be 

compliant; e.g., 

Zb(k,co) = (K/ico)  ;   K = K0(l + iri0) , 

The factor [1 + Rv(k,CO)] is the conditioning compliance 

filtering function; the filtering efficiency Cv (£, CO)  of the 

conditioning compliance is given by 

Cv(k,co)  =   \l-Rp(k,co)\2 

= 4\Zw(k,(0)\2   \Zb(k,CD)+ Zw(Kco)\~2  • 
V.20 
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Viewgraph 21a 

An ideal compliance is one that renders I Zw(k,CO) I » I Zc{k,CO) I throughout the relevant 

spectral range of concern. In this case the fluid-surface impedance is the dominant impedance on the 

boundary. This condition is predicated on the auxiliary condition that demands that 

I Zp(k,CO) I » I Zc(k,CO) I so that the mechanical surface impedance of the boundary is dominated by 

the compliance of the layer, [cf. Viewgraphs 3 and 4.] The ideal conditioning compliance is one for 

which 

[K0 /(cope)] = £0  « 1 ;   £0 (K0/co0pc) ;  co = co0  , 

where (C0o) is the resonance frequency of the surface stiffness of the compliant layer and the surface 

mass of the fluid. The inverse fluid loading parameter (£0) is the inverse fluid loading factor at 

resonance. The condition for this resonance is given by 

(kclcof0      =    1 + (£0T
2     ;     co = co0  , 

where the subscript (o) indicated quantities at resonance. In order to maintain Cv(k, CO) close to the 

value of (4) in the relevant range 

£0   «  10~2   , 

must be obeyed, which confirms the ideal conditioning compliance requirement. The condition is 

commensurate with a "pressure release boundary". Thus the ideal conditioning compliance is that of a 

pressure release boundary, [cf. Viewgraph 16a.] For a pressure release boundary Cv(k ,CO) - 4 in the 

relevant range; i.e., a velocity doubling at the boundary. 
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Viewgraph 21b 

What is the situation if the resonance is allowed to occur in the range just above the sonic range; 

i.e., if (£0) is assumed small compared with unity but not negligible. The conditions are 

(ke/(D)l  =  l + (£0T
2   ;    £0   =  10"1   «1  ;    (kc/co)2

o=l + l02   ;     (0 = 0), O       ' 

so that (kcl(ö)0 = 10. The resonance and its influence on the filtering efficiency Cv(k ,(0) of the 

conditioning compliance is illustrated on the viewgraph. Of particular interest is the post resonance 

nature of Cv(k,0)). The values of Cv(k,CO) are drastically diminished with increase in (kc/co) past 

the resonance location at (kc/(0)o. The diminishing is of benefit to the array; the decrease occurs in the 

subsonic range where only noise components reside, [cf. Viewgraph 17 for comparison with the 

filtering efficiency of a blanket.] There is, however, a penalty associated with this benefit; at and in the 

vicinity of the resonance there is an increase in Cv (k,G>). Whether on balance it is beneficial or 

detrimental to introduce a resonance depends critically on the distribution of components of the noise in 

the subsonic range. Can (£0) be further increased? Well, (£0) much beyond unity will interfere with 

the maintenance of Cv(k,G>) at the value of (4) in the supersonic range; not a good design procedure. 

The situation for £0 = 1 is also illustrated on the viewgraph. It is observed that some erosion in the 

value of Cv(k ,CO) occurs in the supersonic range. A decrease in Cv(k ,(Q) in this supersonic range 

diminishes the sensitivity of the array to components in the signal, not a good design procedure either. 

However, when £0 = 1, the diminishing of Cv(k,Q)) in the subsonic range, commences earlier and the 

range occupied by the resonance is decreased. Again, whether rendering £0 = 1 is more beneficial than 

detrimental is matter to be investigated. 

48 



The filtering efficiency Cv (k,(o) of a compliantly 
conditioned boundary, 

M(r 

4 
M(T 

3 

100 

10 

cv(k,co; l 

0.1 

0.01 

MO" 
-3 

1-10 
-4 

1-10 
-5 

e0 = [K0/((o0pc)] 

z0 = 

0.1 

10° 

■i^^^^^^^i^i^*^*^ J-. 

V 
% 

% 

10 -l 

E0 « 10 
>-•' 

\ 
\ 

V 

\ v. \   >?   \ 

\ Y 
\ 
\ 
\ 
\ 
\ 
\ 

io (kcm  loo 1-10* 

Resonance of the surface stiffness of compliant layer 
and surface mass of fluid. 

V.21b 49 



Viewgraph 22 

Inherent to the velocity array is the conversion filtering efficiency Ev
p(k,(ü). This factor in the 

filtering efficiency of the velocity array is dependent merely on the parameter (kc/co); it is assumed to 

be independent of any of the material properties of the array. The conversion filtering efficiency 

Ep(k,CO) is depicted as a function of (kc/co) on the viewgraph. In the supersonic range super- 

directivity effects are exhibited, culminating with the plunge to zero at the sonic location. A recovery, 

accompanied by a steep increase, at the rate of (kc / ft))2, is observed, as (kc I CO) is further increased 

into the subsonic range. This monopole-to-dipole, dipole-to-quadrapole, etc., behavior, is typical of 

pressure-to-velocity arrays. How detrimental is the presence of the conversion filtering efficiency 

Ep(k,CO) of the velocity array to its utilization? The super-directivity in the supersonic range may, in 

certain situations, be taken advantage of to enhance the filtering efficiency of the array in this range. 

The higher and higher values of the conversion filtering efficiency, at the higher and higher subsonic 

ranges, cannot be but detrimental to the overall filtering efficiency of the array. This detrimental affect 

is especially true if the noise components that reside in these higher and higher subsonic ranges are 

significant even for the pressure array in which the conversion filtering efficiency is absent. 
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Viewgraph 23 a 

The ideal passive filtering efficiency of the boundary of a velocity array is given by 

Dlv(k,CO) =  Cv(k,0))Ev
p(k,CO)    , 

with Cv(k,CO) and Ev
p{k,(0) as shown in Viewgraphs 21a and 22, respectively. In this viewgraph the 

ideal passive filtering efficiency of the boundary of a velocity array is presented as a function of 

{kc I CO). The detrimental effects of the conversion filtering efficiency Ep(k,CO) are clearly 

demonstrated and are driven home by comparing this viewgraph with that presented in Viewgraph 16a. 

The detriment is largely in the higher and higher subsonic range. 
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The ideal filtering efficiency Dlv(k,co) = 

{[Cv (k, (0)EV
V (k, co)]} of an ideally, but compliantly 

conditioned boundary (a pressure release boundary) taking 

account of the conversion filtering efficiency. 

Dlv(k,co)    : 

10" 

10- 

io- 

10" 

10 -5 

10 

i   i i i ill i      i    i   i i iill i      i    i   i i i ill L 

1 Mrt0 HA1    ,.      .      v    tr\2 10" 1°1 (kc/co) 1°5 

I I 11 111 

103 

V.23a 53 



Viewgraph 23b 

One recalls that the resonance in the conditioning compliance benefited the filtering efficiency of 

the boundary in the subsonic range exactly where the detrimental affects of the conversion filtering 

efficiency occur. May one hope that this resonance could mitigate these detrimental affects? Indeed, 

beyond the resonance at (kc/co)0, the rise in one corresponds to the fall in the other. The viewgraph 

shows the extent of this mitigation using Viewgraphs 21b and 22. Clearly the "rise and fall" match each 

other, but only in the range beyond (kc/co)0. Also, the increase in Dlv(k,Cd), at and in the vicinity of 

the location of the resonance, is clearly discernible. Of course except for this peak in Dw(k, CO) with 

£0 = 1, it favorably competes with Cp(k,CO) presented in Viewgraph 16b with £c = 10-1 and 

(COc / CO) = 10. One finds that the devastating affects introduced into the velocity array by Ev
p (k, CD) 

can be largely mitigated by rendering the boundary with a conditioning compliance for which £0 = 1. 

A narrow region in (kc/co), about {kclco)0, remains, nonetheless, troublesome. How troublesome is 

this peak in the passive-filtering efficiency is yet to be determined; e.g., if there are noise components 

that reside in this narrow region, a troublesome situation may exist. In the absence of such noise 

components, the filtering efficiency of the boundaries in the two cases; a pressure array and a velocity 

array, may be largely on par. 
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The filtering efficiency £>lv(£,©)= {[Cv(k,co)Ep(k,co)]} 

of a compliantly conditioned boundary taking account of 

the conversion filtering efficiency. 
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Viewgraph 24 

The blanket may also be introduced onto the boundary in which the velocity array is flush mounted. 

The filtering efficiency of the blanket on a velocity array is assumed to be that on a pressure array. The 

latter is depicted in Viewgraph 17. The standard blanket is that corresponding to a thickness (b) given by 

(bco/c)= (1 / 30). Cladding the velocity array with a blanket yields a passive filtering efficiency 

Dv(k,CO) for the velocity array 

Dv(k,co)   = Dw(k,co)B(k,(o) ;  Dlv(k,co) = Cv(k,co) Ev
p(k,co) . 

The placing of a standard blanket on a velocity array, for which Dlv (k, CO) is as depicted in 

Viewgraph 23b, yields a passive filtering efficiency Dv(k,CO) as depicted in the viewgraph. The benefit of 

a blanket to the passive filtering efficiency in the subsonic range is clearly demonstrated in the viewgraph. 

[cf. Viewgraph 18b.] Of particular interest is that the blanket wins over the severe filtering deficiency in the 

higher subsonic range. This severe filtering deficiency is introduced by the conversion filtering efficiency 

Ep (k, CO) that is inherent to the velocity array. [Exponential versus quadratic dependence.] Since the 

resonance in Cv(k,CO), with £0 = 1, is close to the sonic location, the blanket is hardly effective with 

respect to the resonance peak in the passive filtering efficiency. 
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The passive filtering efficiency 

Dv (Jfc, (0) = {[Cv(k,C0)Ev
p(k, CO) B(k,0))]} of a blanketed 

compliantly conditioned boundary taking account of the 

conversion filtering efficiency. 
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Viewgraph 25 

The equivalent factor Tp(k,co) relates the noise spectral density that a velocity array perceives 

were its combined filtering efficiency adjusted to be that of a corresponding pressure array. Since the 

steered filtering efficiencies of the two array types are properly calibrated and since the signal spectral 

density is confined to the supersonic range, the equivalent factor also relates the signal spectral density 

that a velocity array perceives were its combined filtering efficiency adjusted to be that of a 

corresponding pressure array. 

OpS(ks,CD)   = jdkJp(ks\k,co) U[l-(kc/co)] ®pS(k,(D)   ; 

Ovsiks,(o)   = \dkJp(k\k,(D) U[l-(kc/(0)] O^U,«)   ; 

[Qvsik^a))   = T^{k,(o)^pS{k,(o)\ U[l-(kc/co)]   . 

An example for the signal spectral density may be cast in the form 

®pS(ks,(0)   = ®s(ks,(0) S(kx-ksx) Siky-ksy)    . 
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Equivalent Factor Tp(k,co) between the pressure and 

velocity arrays 

OpN(ks,(o) = \dk Jp(ks\k,a) ®pN(k,CQ) ; 

OvN{ks,(o) = \dk Jp{ks\k,(0) $>vN(k,(o) , 

where 

Jp(ks\k,co) = Ap{ks\k,(o) Dp(k,0)); 

®vN(k,(D) = T^(k,co) ®pN(k,(0) ; 

T^(k,co) = [Dlv(k,co)ICp{k,(D)-\ . 
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Viewgraph 26 

The equivalent factor Tp (k, (o) cursorily and primitively compares the effectiveness of the 

filtering efficiency of a velocity array and the corresponding effectiveness of the filtering efficiency of a 

pressure array. Where Tp (k,CO) is less than unity, the pressure array is the less effective and where 

Tp{k,(0) exceeds unity, the pressure array is the more effective. In the case of the ideal conditioning of 

both, the pressure and velocity arrays, the pressure array is deficient in the supersonic range as compared 

to the velocity array. This relative deficiency is due to the super-directivity in the filtering efficiency of 

the velocity array. However, the relative deficiency in this range affects the signal as well as the noise. 

Nonetheless, situations may arise in which this super-directivity in the velocity array may be 

advantaged. On the other hand, in the subsonic range the filtering efficiency of the pressure array is 

superior to that of the corresponding velocity array. This superiority is higher the higher the subsonic 

range is. Thus, according to the viewgraph, if the pressure array has a marginal signal-to-noise ratio 

because of a noise spectral density that largely resides in the subsonic range, the corresponding velocity 

array has a signal-to-noise ratio that is hopeless. Problems: (+) Super-directivity may be put to a 

combined filtering advantage. (-) Ideal conditioning compliance implies "a pressure release boundary." 

Such a boundary is hardly suitable for underwater use. 
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Equivalent Factor T* (k,a>) under ideal conditions on 

both the pressure and velocity arrays 

[ec «1«(coclco)] and [£0 « 1]. 
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Viewgraph 27 

Can a more realistic conditioning of the boundary render the equivalent factor Tp (k, CO) more 

favorable to a velocity array than the prognosis in Viewgraph 26 indicates? A clue that this may be the 

case is argued in Viewgraph 23b. In the present viewgraph a situation is depicted in which the 

conditioning compliance is defined by an inverse fluid loading parameter (£0) that is equal to (10~ ). 

An improvement over the equivalent factor Tp(k,G>) depicted in Viewgraph 26 is clearly indicated in 

the present viewgraph. There is, however, a slight deterioration in a narrow range of (kc/co) centered 

about the value of (kc I CO)0  =(10), where the resonance is located. Moreover, the improvement is 

largely in the range of (kc/co) that is above the location of the resonance at {kcl (0)0. Will reduction 

in the location of the resonance from (kc/co)0 equal to (10) to (kc I CO)0  = (-y/2) further improve the 

equivalent factor Tp(k,CO) in favor of the velocity array? 
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Viewgraph 28 

In this viewgraph the inverse fluid loading parameter (£0) is equal to (10°). An improvement in the 

equivalent factor Tp (k,(0) in this viewgraph, over that depicted in Viewgraphs 26 and 27, is clearly 

indicated. There is, however, a deterioration in a narrow range of (kc/co) centered about the value of 

(V2), where the resonance value (kcl(0)0 is located. It is thus concluded that provided noise spectral 

components sparsely reside at and in the vicinity of this resonance location, the signal-to-noise ratio of a 

velocity array may not fall far short from that of a pressure array. 
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Viewgraph 29 

A rough sketch of the incident spectral density QjBLik,®) of the pressure in a turbulent 

boundary layer (TBL) is depicted in this viewgraph. The uncertainty of the low-wavenumber content in 

^TBLOü'®) is emphasized. The narrow dashed line is considered to be the standard incident spectral 

density to be used subsequently. The convective speed (Uc) of the TBL is assumed, in this report, to be 

—1 
(10   ) of the sound speed (c) in the fluid. The stream-wise and the cross stream-wise spectral densities 

are depicted in this viewgraph. 
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Viewgraph 30a 

The equivalence is given by 

Oiw(&.®) = T^(k,co)^pN(k,co)    . 

If the pressure array perceives ^p^(k,0)) the velocity array perceives equivalently ®vN(k,(ö) when 

the filtering efficiency in the two arrays are rendered equal, [cf. Viewgraph 25.] Clearly, in the stream- 

wise the equivalent velocity array has to handle much more in the subsonic range and, hence, it will 

have a poor signal-to-noise compared with the corresponding pressure array were the incident noise 

largely that in TBL. In this viewgraph the ideal boundaries are employed; i.e., the conditioning plate is a 

rigid boundary and the conditioning compliance is a pressure release boundary. 
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The equivalent spectral density ®vN(k,co) of the 

pressure in a turbulent boundary layer (TBL), as a 

function of (kxc/co) with (kvc/(ü) = 0. r 
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Viewgraph 30b 

As in Viewgraph 30a except that the comparison is made with respect to the cross stream-wise of a 

TBL. Again, the velocity array has to handle much more in the subsonic range. 
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The equivalent spectral density $>vN(k,co) of the 

pressure in a turbulent boundary layer (TBL), as a 

function of (k c/co) with (kxcl co) = 0. 7 
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Viewgraph 31 

The spectral density Q>vN(k,co) in the stream-wise of the noise in a TBL that an equivalent 

velocity array needs to handle versus the corresponding spectral density 0p^(k,a>) that a pressure 

array handles. 

With these parameters the pressure array clearly wins inspite of the utilization of a resonance in 

the conditioning compliance at {kcl (0)0 = -J2. 
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The equivalent spectral density &vN(k,co) of the 

pressure in a turbulent boundary layer (TBL), as a 

function of (kxcI co) with (kyc/co) = 0. The 

parameters (£0) and (£c) are set equal to 10  and 10" , 

respectively, and (coc/co) = 6. 
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Viewgraph 32 

With these parameters and with the exception of the narrow range in (kc/co) about (kc/0))o the 

velocity array matches the filtering efficiency of the pressure array. 
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The equivalent spectral density OvN(k9co) of the 

pressure in a turbulent boundary layer (TBL), as a 

function of (kxc/co) with (kyc/co) = 0. The 

parameters (£0) and (£c) are set equal to 10° and 10-1, 

respectively, and (co /co) = l2 
J 
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Viewgraph 33 

With these parameters and with the exception of the narrow range in (kc/(o) centered about 

(kc/C0)o, the velocity array appears slightly but definitely better than the pressure array in handling the 

noise spectral density incident in the presence of a TBL. 
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The equivalent spectral density ®vN(k9(D) of the 

pressure in a turbulent boundary layer (TBL), as a 

0   _„J   1A-1 

function of (kxc/co) with (kycl (O) = 0. The 

parameters (£0) and (£c) are set equal to 10u and 10~\ 

respectively, and (a>c I coi) = 18. 
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Viewgraph 34 

A question that remains: Is the requirement for a conditioning compliance, that resonates at an 

appropriately chosen resonance frequency (C00), in the realm of practicality? The estimations 

conducted on this viewgraph suggest an affirmative answer. 
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